
  

 

© 2025 CGI Inc.    Confidential 
 

Confidential 

 

 

 

 

WinTid Integration Implementation 
documentation 
 

 



 

2 
 

Confidential 

Table of Contents 

1 Introduction ____________________________________________________________________ 5 

1.1 Goal ___________________________________________________________________________ 5 

1.2 Intended audience _______________________________________________________________ 5 

2 WinTid API _____________________________________________________________________ 6 

2.1 Responsible Use of API Endpoints _________________________________________________ 6 

2.2 Connecting to Wintid Api _________________________________________________________ 6 

2.3 Self-hosting in kestrel ____________________________________________________________ 6 

2.3.1 Authentication __________________________________________________________________ 7 

2.4 API Reference __________________________________________________________________ 8 

2.4.1 Errors _________________________________________________________________________ 8 

2.4.2 PField module __________________________________________________________________ 9 

2.4.3 Job module ___________________________________________________________________ 12 

2.4.4 Employee module ______________________________________________________________ 13 

2.4.5 Absencecode module ___________________________________________________________ 25 

2.4.6 Project allocation module ________________________________________________________ 26 

2.4.7 Organization unit import module __________________________________________________ 26 

2.4.8 Dynamic query module __________________________________________________________ 30 

2.4.9 Export to API module ___________________________________________________________ 43 

3 File based imports ______________________________________________________________ 44 

3.1 Automating file-based imports ___________________________________________________ 44 

3.2 Import file formats and header ____________________________________________________ 44 

3.3 Employee import _______________________________________________________________ 44 

3.3.1 Example import file _____________________________________________________________ 45 

3.4 Organizational unit import _______________________________________________________ 45 

3.4.1 Example import file _____________________________________________________________ 45 



 

3 
 

Confidential 

3.5 Job / Project import _____________________________________________________________ 46 

3.5.1 Example import file _____________________________________________________________ 46 

3.6 Pfield import ___________________________________________________________________ 47 

3.6.1 Example import file _____________________________________________________________ 47 

3.7 Balance import _________________________________________________________________ 48 

3.7.1 Example import file _____________________________________________________________ 48 

4 File based exports ______________________________________________________________ 49 

5 API based exports ______________________________________________________________ 50 

5.1 Introduction ___________________________________________________________________ 50 

5.2 Formats ______________________________________________________________________ 50 

5.3 Process _______________________________________________________________________ 50 

5.4 Api configuration _______________________________________________________________ 51 

5.5 Receipt endpoint _______________________________________________________________ 52 

5.6 Notes on the row sending id _____________________________________________________ 52 

6 WinTid Integrationservice _______________________________________________________ 53 

6.1 Integration points ______________________________________________________________ 53 

6.1.1 DoFileImport __________________________________________________________________ 53 

6.1.2 GetDepartmentInfo _____________________________________________________________ 53 

6.1.3 GetEmployeeInfoAll ____________________________________________________________ 53 

6.1.4 GetEmployeeInfoInDepartment ___________________________________________________ 53 

6.1.5 GetEmployeeInfoInFirm _________________________________________________________ 53 

6.1.6 GetFirmInfo ___________________________________________________________________ 53 

6.1.7 GetHistoricalAbsence ___________________________________________________________ 53 

6.1.8 GetResultsInHours _____________________________________________________________ 54 

6.1.9 GetScheduledAbsence __________________________________________________________ 54 

6.1.10 GetSchemaInfo ________________________________________________________________ 54 

6.1.11 GetSchemaInfoBySchemaId _____________________________________________________ 54 



 

4 
 

Confidential 

6.1.12 GetSchemaTime _______________________________________________________________ 54 

6.1.13 ImportProjectResult ____________________________________________________________ 54 

6.1.14 UpdateSchemaTime ____________________________________________________________ 54 

7 References ____________________________________________________________________ 55 

7.1 Employee import field overview __________________________________________________ 55 

7.1.1 Header fields __________________________________________________________________ 55 

7.1.2 Employee fields ________________________________________________________________ 55 

7.1.3 Position fields _________________________________________________________________ 56 

7.1.4 Status codes __________________________________________________________________ 57 

7.1.5 Import example ________________________________________________________________ 58 

7.2 Default values _________________________________________________________________ 59 

7.3 Job import field overview ________________________________________________________ 61 

 

 



 

5 
 

Confidential 

1 Introduction 

1.1 Goal 

This document should provide necessary information to implement integrations that access WinTid via Wintid API, 

Wintid Integrationservice as well as file-based imports and exports using Wintid Integrationserver. 

1.2 Intended audience 

Developers and DevOps who need to connect programmatically to WinTid in order to integrate with other systems 

such as HR, ERP, Project management. 



 

6 
 

Confidential 

2 WinTid API 
 

2.1 Responsible Use of API Endpoints 

To ensure stable operations and optimal performance for all our customers, we require responsible and 

reasonable use of our API endpoints, both for data retrieval and submission. Requests should be limited to 

what is necessary for your use case, and unnecessary frequent requests or bulk operations should be 

avoided. 

If usage patterns result in significantly increased resource consumption on our systems and necessitate 

capacity expansions, we reserve the right to evaluate how this should be addressed, including potential 

adjustments to the cost structure. This will be managed in dialogue with the relevant parties. 

2.2 Connecting to Wintid Api 

WinTid API is a .net web API that can be run as a standalone .exe which self-hosts with Kestrel, or it can be hosted 

inside Microsoft Internet Information Services (IIS). 

2.3 Self-hosting in kestrel 

By starting the wintidapi.exe application, WinTidApi starts up and will by default listen for http requests on localhost 

port 5000 and https on localhost port 5001. 

This can be changed in appsettings.json by adding a kestrel section – for example the below section will make it listen 

on all interfaces ports 80/443: 

   "Kestrel": { 
       "Endpoints": { 
           "Http": { 
               "Url": "http://*:80" 
           }, 
           "Https": { 
               "Url": "https://*:443" 
           } 
       } 
   } 

 

Configuring https certificates and other configuration options for Kestrel are outside the scope of this document, but 

see e.g. https://learn.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/options?view=aspnetcore-8.0 for 

more information. 

 

Verification that WinTid Api is running can also be done on the command line, by using curl ( https://curl.se/ ): 

curl http://localhost:5000/pfield/1 

[ 
 {"Level":1,"Id":"14.2.0","Name":"14.2.0","Active":true,"ActiveFromDate":null,"ActiveToDate":null}, 
 {"Level":1,"Id":"14.3.0","Name":"14.3.0","Active":true,"ActiveFromDate":null,"ActiveToDate":null}, 
 {"Level":1,"Id":"S_1001","Name":"Product Development","Active":true,"ActiveFromDate":null,"ActiveToDate":null}, 
 {"Level":1,"Id":"S_1000","Name":"Project allocation time","Active":true,"ActiveFromDate":null,"ActiveToDate":null}, 
 {"Level":1,"Id":"100002","Name":"Internal","Active":false,"ActiveFromDate":null,"ActiveToDate":null} 
] 

  

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel/options?view=aspnetcore-8.0


 

7 
 

Confidential 

 

2.3.1 Authentication 
 
WinTid API supports three modes of operation with regards to authentication: 

 

1. No authentication – all calls honored. 

2. HTTP Basic authentication – with a single set of credentials that gives full access to the API 

3. Api Key authentication where api keys can be created as needed, with or without expiration dates, and with 

access to a given role that in run gives access to a subset of api endpoints. 

When WinTid is part of CGI SaaS solution the Api Key authentication must be used 

 

Authentication is determined by the Access section of appsettings.json: 

"Access": { 
    "AuthRequired": false, 
    "UseApiKeys": true, 
    "Username": "testuser", 
    "Password": "testpass" 
}, 

 

2.3.1.1 No authentication 

By leaving AuthRequired to false, WinTidApi will be “open” and not require any authentication 

 

2.3.1.2 HTTP Basic authentication 

By setting AuthRequired to true, leave UseApiKeys as false and configure a username and password, WinTidApi will 

require an Authorization: Basic base64encoded(username:password) http header in the request, or the request will be 

rejected. 

   "Access": { 
       "AuthRequired": true, 
       "UseApiKeys": false, 
       "Username": "testuser", 
       "Password": "testpass" 
   }, 

 

The above settings would require the following http header in the request: 

Authorization: Basic dGVzdHVzZXI6dGVzdHBhc3M= 

 

2.3.1.3 Api key authentication 

By setting both AuthRequired and UseApiKeys to true, WinTidApi will require an Authorization: Bearer 

base64encoded(token) with a valid bearer token that gives access to a role in WinTidApi:  

"Access": { 
  "AuthRequired": true, 
  "UseApiKeys" : true 
}, 

 



 

8 
 

Confidential 

Existing roles can be listed with wintid-cli: 

wintid-cli listapirole 

1 – ABSENCE 

2 – DYNAMICQUERY 

3 – EMPLOYEE 

4 – EXPORT 

5 – IMPORT 

6 – JOB 

7 - PROJECT 

 

To see the actual endpoints in a role, add the role id with -r: 

wintid-cli listapirole -r 5 

5 – IMPORT 

/import/company 

/import/employeeandposition 

/import/employees 

/import/employeesnapshot 

/import/organizationunit 

 

A token can be created using wintid-cli: 

wintid-cli addapikey -n hr_employeeimport -e 2025-12-31 -r 5 

Where -n is the name of the key, -e is expiry date (optional) and -r is the id of the role, in this case the default import 

role. The above command creates an apikey called hr_employeeImport assigned to role 5 (import) with access to the 

import endpoints only. The output of the command contains the base-64 encoded token. Important: this is the only 

time the token is available. It is not stored in wintid, if you lose it you will need to generate a new key. 

 

Key added. 

Apikey 19: hr_employeeimport, Expiration: 31/12/2025, Assigned to Role id 5 

Please securely store this token (it can not be retrieved again): Wg2AfPAuSzqRU8b+bpdOqg== 

 

Wintid comes with a default set of roles that are stored in the dbo.wintidapi_role table. 

A role can have access to endpoints, defined in dbo.wintidapi_role_endpoint table. 

 

It is recommended to leave the existing roles unchanged and instead create new roles for your custom needs. 

Currently, changes to wintidapi_rol and wintidapi_role_endpoint requires using T-SQL commands. 

 

2.4 API Reference 

WinTidApi provides simple swagger documentation for most interfaces, it can be found at /swagger/index.html 

Note: Employee import, Employee snapshot import, Employee snapshot by firm import, Job import and Organization 

unit import do not provide correct swagger documentation due to the flexible format of those imports. 

 

2.4.1 Errors 

 



 

9 
 

Confidential 

If a request is malformed or illegal, WintidApi will usually provide an HTTP 400 Bad Request error, with error 

information in the body: 

 

{"Message": "PField1Id must be specified","Type": "job_error","Status": "failed"} 

 

2.4.2 PField module 
 

Allows retrieving, updating and adding PFields, stored in the pfelt1, pfelt2, pfelt3, pfelt4 and pfelt5 tables. 

 

HTTP GET /pfield/{pfield level} 

- returns a list of all pfields on the specified level 

 

HTTP GET /pfield/{pfield level}/{pfield id} 

- returns information on the pfield entry with the specified level and pfield id. 

 

HTTP GET /pfield/levels 

- returns a list of all pfield levels used in the Wintid instance. 

 

HTTP PUT /pfield/{pfield level}/{pfield id}  

- pfield data in body (see examples below) 

- adds or updates a pfield with the specified level and id. 

 

HTTP POST /pfield/ 

- pfield data in body 

- adds or updates a pfield with the level and id in the body 

 

2.4.2.1 Examples 

Examples assume running locally on the server that is running WintidApi, and that it is listening on the default port 

5000. 

 

Retrieve all configured pfield levels 

curl http://localhost:5000/pfield/levels 

1,2,3,4 

 

List all pfields on level 1 

curl http://localhost:5000/pfield/1 

[ 
    { 
        "Level": 1, 
        "Id": "S_1000", 

http://localhost:5000/pfield/1


 

10 
 

Confidential 

        "Name": "Project", 
        "Active": true, 
        "ActiveFromDate": null, 
        "ActiveToDate": null 
    }, 
    { 
        "Level": 1, 
        "Id": "S_1001", 
        "Name": "Product development", 
        "Active": true, 
        "ActiveFromDate": null, 
        "ActiveToDate": null 
    }, 
    { 
        "Level": 1, 
        "Id": "100002", 
        "Name": "Internal time", 
        "Active": false, 
        "ActiveFromDate": null, 
        "ActiveToDate": null 
    }, 
    { 
        "Level": 1, 
        "Id": "1005", 
        "Name": "Testing", 
        "Active": false, 
        "ActiveFromDate": null, 
        "ActiveToDate": null 
    } 

] 

 

Show one specific pfield 

curl http://localhost:5000/pfield/1/S_1001 

{ 
    "Level": 1, 
    "Id": "S_1001", 
    "Name": "Product Development", 
    "Active": true, 
    "ActiveFromDate": null, 
    "ActiveToDate": null 

} 

 

Same example as above, returning xml instead of json when given .xml extension. In an API request, specifying the 

Content-type: application/json or application/xml in the request header determines the returned format. 

curl http://localhost:5000/pfield/1/S_1001.xml 

<?xml version="1.0"?> 
<PField xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
  <Level>1</Level> 
  <Id>S_1001</Id> 
  <Name>Product Development</Name> 
  <Active>true</Active> 
  <ActiveFromDate xsi:nil="true" /> 
  <ActiveToDate xsi:nil="true" /> 

</PField> 

http://localhost:5000/pfield/1/S_1001
http://localhost:5000/pfield/1/S_1001.xml


 

11 
 

Confidential 

 

Update a single pfield using json 

curl -v -X PUT -H "Content-Type: application/json" -d '{"Level": 1,"Id": "S_1001","Name": "json PUT 

update","Active": true,"ActiveFromDate": null,"ActiveToDate": null}' 

http://localhost:5000/pfield/1/S_1001 

 

Update a single pfield using json 

curl -v -X POST -H "Content-Type: application/json" -d '{"Level":1,"Id":"S_1001","Name":"json POST 

update","Active":true,"ActiveFromDate":null,"ActiveToDate":null}' http://localhost:5000/pfield 

 

Update a single pfield using XML 

curl -v -X PUT -H "Content-Type: application/xml" -d '<?xml version="1.0"?><PField 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><Level>1</Level><Id>S_1001</Id><Name>XML PUT 

update</Name><Active>true</Active><ActiveFromDate xsi:nil="true" /><ActiveToDate xsi:nil="true" 

/></PField>' http://localhost:5000/pfield/1/S_1001 

 

Update a single pfield using XML 

curl -v -X POST -H "Content-Type: application/xml" -d '<?xml version="1.0"?><PField 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><Level>1</Level><Id>S_1001</Id><Name>XML POST 

update</Name><Active>true</Active><ActiveFromDate xsi:nil="true" /><ActiveToDate xsi:nil="true" 

/></PField>' http://localhost:5000/pfield 

  

http://localhost:5000/pfield/1/S_1001
http://localhost:5000/pfield/1/S_1001
http://localhost:5000/pfield


 

12 
 

Confidential 

 

2.4.3 Job module 
 

2.4.3.1 HTTP POST /import/job 

Allows importing new and updated jobs. POST body should contain required fields similar to file-based imports (see 

7.3 for a description of the possible fields). Supported formats are XML and JSON.  

 

Example curl command to post import file in XML format: 

curl -v -X POST -H "Content-Type: application/json" -d @importfile.xml 

http://localhost:5000/import/job 

JSON example  

{ 

    "JobImport": { 

        "Header": { 

            "Date": "2025-02-13", 

            "Sender": "Agresso", 

            "Type": "Employee Import", 

            "DepartmentType": "N" 

        }, 

        "Jobs": [ 

            { 

            "JobName": "H - Ledelse", 

            "Pfield1No":"111", 

            "Pfield2No":"222", 

            "Pfield4No":"111", 

            "JobBudget":"11,5", 

            "JobPlannedStartDate":"2009-07-30", 

            "JobPlannedEndDate":"2009-08-01", 

            "ResponsibleEmployeeId": "26529" 

            } 

        ] 

    } 

  } 

 

Notes: 

 

• If a Pfield number is accompanied by a name, that pfield will be created if it does not exist. If it does exist it 

will be updated if the name is different from the existing name 

• Multiple jobs can be submitted in the same call 

• If a new job is not provided a job number, one will be auto-generated for it, based on the Unix Epoch of the 

current second combined with a counter that allows up to 100 million unique job numbers per second. 

 

 

http://localhost:5000/import/job


 

13 
 

Confidential 

2.4.3.2 HTTP PUT / POST /job 

 

The job endpoint allows a simple interface for adding jobs/projects to the jobb table in Wintid. Can update names on 

existing jobs, identified by pfield combination. 

 

2.4.3.2.1 Example 
curl -v -X POST -H "Content-Type: application/json" -d '{"Id": 202010061607050176,"Name": "updated 

job name","Pfield1Id": "12","Pfield2Id": "11","Pfield3Id": "3001"}' http://localhost:5000/job 

 

2.4.4 Employee module 
 

2.4.4.1 HTTP POST /import/employees 

Allows importing new and updated employees, typically from HR systems. POST body should contain required fields 

similar to file-based imports, but supports JSON in addition to XML. Note that this endpoint will always create a 

position when importing a new employee, and will always update the current position at the specified date in the 

header section of the body – or todays date if not specified. If wintid is configured to create new positions upon 

changes to working percentage or department, changing these fields in the import will create a new position from the 

above date. 

 

Example curl command to post import file in XML format 

curl -v -X POST -H "Content-Type: application/xml" -d @importfile.xml 

http://localhost:5000/import/employees 

 

Minimal XML example file 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<EmployeeImport> 

    <Header> 

        <Date>2012-10-16</Date> 

        <Sender>Excel</Sender> 

        <Type>Employee Import</Type> 

        <DepartmentType>N</DepartmentType> 

    </Header> 

    <Employees> 

        <Employee> 

            <EmployeeId>3334</EmployeeId> 

            <FirstName>Ola</FirstName> 

            <LastName>Nordmann</LastName> 

        </Employee> 

    </Employees> 

</EmployeeImport> 

 

Example curl command to post import file in JSON format 

http://localhost:5000/job
http://localhost:5000/import/employees


 

14 
 

Confidential 

curl -v -X POST -H "Content-Type: application/json" -d @importfile.json 

http://localhost:5000/import/employees 

 

Minimal json example importing 2 employees 

{ 

    "EmployeeImport": { 

        "Header": { 

            "Date": "2012-10-16", 

            "Sender": "HR", 

            "Type": "Employee Import", 

            "DepartmentType": "N" 

        }, 

        "Employees": [ 

            { 

                "EmployeeId": "3335", 

                "LastName": "Nordmann", 

                "FirstName": "Ola", 

            }, 

            { 

                "EmployeeId": "3336", 

                "LastName": "Another", 

                "FirstName": "Employee" 

            } 

        ] 

    } 

} 

 

Example return values on completion of import 

{"status":6,"transactions":1} 

 

See 7.1 for a full list of fields for the Header, Employee and Position entries, as well as a description of the 

status codes returned. 

 

2.4.4.2 HTTP POST import/employeesnapshot 

 

• This endpoint allows import of new employees/positions as well as updates to exiting positions in a “snapshot” 

manner. This mean that the positions on an employee in WinTid will mirror the positions included in the 

import. A new position in the import file will be added to WinTid, and a position that is missing from the import 

file but exists in WinTid will be marked as deleted in WinTid. 

• This import type is meant for customers who want to maintain a one-to-one mapping of WinTid positions with 

positions in their HR or similar systems. 

• One call to the endpoint can include many employees, and each employee can include many positions. 

• EmployeeId (maps to employee.external_employee_id in WinTid) is used to uniquely identify which employee 

should be updated. PositionId (maps to employee_position.external_position_id) is used with EmployeeId to 

http://localhost:5000/import/employees


 

15 
 

Confidential 

uniquely identify the position to update. This means that if a later call to this endpoint has changed the 

PositionId of a position, it will be interpreted as if the original position is deleted, and that a new position with 

the new PositionId is created. 

• Positions in the same chain (same CorrelationId on the same employee) can not overlap in time – any change 

that would cause overlapping positions in the same position chain will be rejected with an error. 

• If a position has its dates changed so that some existing time data ends up outside the position, that data will 

be visible in the Ownerless Data page in MinWinTid where it can be transferred to other positions on the 

employee that currently do not hold time data. 

• If a position has such ownerless data outside the start- and enddates of the position, and a later update adds 

or changes another position so it now spans this date range AND both the original and the new/updated 

position have the same CorrelationId, then the time data will be automatically moved to the new position, as 

long as it does not have time data in the range. 

• New positions added that have an existing earlier position bordering it in the same chain (prior position ends 

on the day before the new position starts), will have settings copied from the prior position. This includes all 

settings except start date and end date 

• New positions added that do NOT have an existing earlier position bordering it in the same chain, will be 

created with default values if configured. See 7.2 for details. 

• Calendar id, wage group id and fixed overtime id are all settings that include a date, and the setting applies 

from that date and until it is replaced by a different setting on a later date. If one of these fields is imported 

WITHOUT a date specified, it applies from the position start date. If an import file attempts to update one of 

these settings on a date that already has a different id, it will be rejected with an error – but note that calendar 

has some configurable functionality, see next bullet point. 

• When importing an updated calendar id on a date where a position already has a calendar id, the default 

action is for the import of that position to fail. This behaviour can be customized by adding an entry in 

wt_system table, emp_import_calendar_setting which supports the following modes: 

o Default: Same as no setting, same functionality as specified above. 

o Ignore: Any difference in the calendar id in the import data on the same date as an existing calendar 

id, is ignored – WinTid value will be unchanged, but no error. 

o Overwrite: The imported value will overwrite any existing value on the same date. 

• When importing an updated wage group id on a date where a position already has a wage group id, the 

default action is for the import of that position to fail. This behaviour can be customized by adding an entry in 

wt_system table, emp_import_wagegroup_setting which supports the following modes: 

o Default: Same as no setting, same functionality as specified above. 

o Ignore: Any difference in the wage group id in the import data on the same date as an existing wage 

group id, is ignored – WinTid value will be unchanged, but no error. 

o Overwrite: The imported value will overwrite any existing value on the same date. 

• If an existing position has its start date moved back in time, and it had any of calendar, fixedovertime code or 

wage group id on the original start date – but does NOT have one on the updated startdate, then those 

settings are moved back in time so they are available from the updated and earlier position start date. 

• Snapshot import supports setting a cutoff date. When a cutoffdate is set, then any position with an end date 

prior to this date will not be affected by imported positions/updates nor will they be deleted if they are not 

included in the import. This means that such positions, for all practical purposes, cannot be edited via 

snapshot import. Additionally, any new or updated position that has/is updated to its startdate before the 



 

16 
 

Confidential 

cutoffdate and its end date on or after the cutoffdate, will have its start date set to the cutoffdate. Enable this 

setting by setting the wt_system setting snapshot_cutoff_date to a valid yyy-MM-dd date. 

 

NOTE: If some employees fail to import, HTTP 400 Bad Request will be returned, although other employees might 

have been successfully imported. The response body will contain details on errors. 

The post body must contain valid XML or JSON data similar to the other file-based imports. This includes a Header 

followed by an Employees list of employees, which in turn can contain a list of positions. Some examples included 

below.   

Example json import file importing one employee with 3 positions 

{ 

    "EmployeeImport": { 

        "Header": { 

            "Date": "2021-05-26", 

            "Sender": "Agresso", 

            "Type": "Employee Import", 

        }, 

        "Employees": [ 

            { 

                "EmployeeId": "3338", 

                "LastName": "Normann", 

                "FirstName": "Ola", 

                "EngageFromDate": "2020-01-01", 

                "Email": "ola.nordmann@test.com", 

  "optionalTexts":[ 

   {"textID":"pfelt1","textValue":"Unit"}, 

   {"textID":"pfelt2","textValue":"Test"} 

  ], 

                "Positions": [ 

                    { 

                        "PositionId": "3338-1", 

                        "CorrelationId": "main", 

                        "DepartmentId": "82", 

                        "PositionStartDate": "2020-01-01", 

                        "PositionEndDate": "2020-06-30", 

                        "CalendarFromDate": "2000-01-01", 

                        "WageId": "UnusedWageId", 

                        "WorkPercent": "100", 

                        "PositionDescription": "First position in chain.", 

                        "WageGroupId": "10", 

                    }, 

                    { 

                        "PositionId": "3338-2", 

                        "CorrelationId": "main", 

                        "DepartmentId": "82", 

                        "IsPrimaryPosition": "True", 



 

17 
 

Confidential 

                        "PositionStartDate": "2020-07-01", 

                        "CalendarFromDate": "2020-07-01", 

                        "WageId": "UnusedWageId", 

                        "WorkPercent": "100", 

                        "PositionDescription": "second in chain, primary", 

                        "WageGroupId": "10" 

                    }, 

                    { 

                        "PositionId": "1177", 

                        "CorrelationId": "other", 

                        "DepartmentId": "90", 

                        "IsPrimaryPosition": "False", 

                        "PositionStartDate": "2020-05-01", 

                        "CalendarFromDate": "2020-05-01", 

                        "WageId": "UnusedWageId", 

                        "WorkPercent": "100", 

                        "PositionDescription": "Some other position", 

                        "WageGroupId": "10" 

                    } 

                ] 

            } 

        ] 

    } 

} 

 

Example return values on completion of import  

{"status":6,"transactions":1} 

 

See 7.1 for a full list of fields for the Header, Employee and Position entries, as well as a description of the 

status codes returned. 

 

  



 

18 
 

Confidential 

 

2.4.4.3 HTTP POST import/employeesnapshotbyfirm 

 

This endpoint performs a snapshot import like the employeesnapshot import with the following differences (the 

data format is exactly the same as for snapshot imports): 

 

a) The import will ignore positions in any firm not included in the import for snapshot functionality. This allows for 

performing snapshot imports on active firms without providing older positions in non-relevant firms, without 

them being automatically deleted.  

b) Note that validations will still apply – you can not have overlapping positions in the same position chain, even 

if they are in different firms. 

c) CutOffdate functionality is not currently supported for snapshotbyfim imports. 

 

 

2.4.4.4 HTTP POST /import/employeeandposition 

 

a) This endpoint allows import of new employees/positions as well as updates to exiting positions, including 

deleting existing positions. A new position in the import file (identified by the combination of employee id and 

position id) will be added to WinTid. 

b) The endpoint supports the same data format as the /import/employeesnapshot import, but without the 

“snapshot” functionality. Only positions to add or update need to be included in the body of the call. Positions 

not included, will not be changed (with one exception explained in f)). 

c) One call to the endpoint can include many employees, and each employee can include many positions. 

d) Only fields included in the post data will be updated. It is not required to provide more fields than what is 

necessary to identify the employee and any positions (EmployeeId and PositionId), as well as the fields to 

update. Note that missing required fields for new positions can lead to positions and employees being 

rejected for business reasons. 

Required fields for new positions are: 

EmployeeId 

PositionId 

PositionStartDate 

FirmId 

DepartmentId 

WorkPercent 

(these are required to be able to save the position in WinTid. For the position to be fully usable for an 

employee there are more fields needed. Which ones depend on the usage of WinTid. See also i) and j)). 

e) Positions in the same chain (same CorrelationId on the same employee) can not overlap in time – any change 

that would cause overlapping positions in the same position chain will be rejected with an error, with one 

exception explained in f). 

f) Any new or updated position that overlaps the latter part of one existing position in the same position chain 

(i.e. both positions have the same position_correlation_id), will lead to WinTid automatically setting the end 

date on the previous position to be equal to the day before the start of the newly imported/updated position. 

Any time data that exists on the previous position inside the date range of the new/updated position will be 

moved to the new/updated position. 



 

19 
 

Confidential 

g) If a position has its dates changed so that some existing time data ends up outside the position, that data will 

be visible in the Ownerless Data page in MinWinTid where it can be transferred to other positions on the 

employee that currently do not hold time data. 

h) If a position has such ownerless data outside the start- and enddates of the position, and a later update adds 

or changes another position so it now spans this date range AND both the original and the new/updated 

position have the same CorrelationId, then the time data will be automatically moved to the new position, as 

long as it does not have time data in the range. 

i) New positions added that have an existing earlier position bordering it in the same chain (prior position ends 

on the day before the new position starts), will have settings copied from the prior position. This includes all 

settings except position id, start date and end date. This also applies if the imported position has an earlier 

start date than the end date of the previous position (for example if the previous position had an open-ended 

start date) 

j) New positions added that do NOT have an existing earlier position bordering it in the same chain, will be 

created with default values if configured. See 7.2 for details. 

k) Calendar id, wage group id and fixed overtime id are all settings that include a date, and the setting applies 

from that date and until it is replaced by a different setting on a later date. If one of these fields is imported 

WITHOUT a date specified, it applies from the position start date. If an import file attempts to update one of 

these settings on a date that already has a different id, it will be rejected with an error – but note that calendar 

has some configurable functionality, see next bullet point. 

l) When importing an updated calendar id on a date where a position already has a calendar id, the default 

action is for the import of that position to fail. This behaviour can be customized by adding an entry in 

wt_system table, emp_import_calendar_setting which supports the following modes: 

o Default: Same as no setting, same functionality as specified above. 

o Ignore: Any difference in the calendar id in the import data on the same date as an existing calendar 

id, is ignored – WinTid value will be unchanged, but no error. 

o Overwrite: The imported value will overwrite any existing value on the same date. 

m) When importing an updated wage group id on a date where a position already has a wage group id, the 

default action is for the import of that position to fail. This behaviour can be customized by adding an entry in 

wt_system table, emp_import_wagegroup_setting which supports the following modes: 

o Default: Same as no setting, same functionality as specified above. 

o Ignore: Any difference in the wage group id in the import data on the same date as an existing wage 

group id, is ignored – WinTid value will be unchanged, but no error. 

o Overwrite: The imported value will overwrite any existing value on the same date. 

n) If an existing position has its start date moved back in time, and it had any of calendar, fixedovertime code or 

wage group id on the original start date – but does NOT have one on the updated startdate, then those 

settings are moved back in time so they are available from the updated and earlier position start date. 

o) Deleting an existing position uses the optional position field “Deleted” set to true. Should it be set on a new 

position the operation will fail. Should it be used on the only position the operation will also fail due to 

business reasons. The field does not support any other value and can be omitted if not needed. 

 

NOTE: If some employees fail to import, HTTP 400 Bad Request will be returned, although other employees might 

have been successfully imported. The response body will contain details on errors. 



 

20 
 

Confidential 

The post body must contain valid XML or JSON data similar to the other file-based imports. This includes a Header 

followed by an Employees list of employees, which in turn can contain a list of positions. Some examples included 

below.   

Example json import file importing two new positions and updating the description of a third position on one employee: 

 

{ 

    "EmployeeImport": { 

        "Header": { 

            "Date": "2021-05-26", 

            "Sender": "Agresso", 

            "Type": "Employee Import", 

        }, 

        "Employees": [ 

            { 

                "EmployeeId": "3338", 

                "Positions": [ 

                    { 

                        "PositionId": "3338-1", 

                        "CorrelationId": "main", 

                        "DepartmentId": "82", 

                        "PositionStartDate": "2020-01-01", 

                        "PositionEndDate": "2020-06-30",                         

                        "WageId": "UnusedWageId", 

                        "WorkPercent": "100", 

                        "PositionDescription": "First position in chain.", 

                        "WageGroupId": "10"                         

                    }, 

                    { 

                        "PositionId": "3338-2", 

                        "CorrelationId": "main", 

                        "DepartmentId": "82", 

                        "IsPrimaryPosition": "True", 

                        "PositionStartDate": "2020-07-01",                         

                        "WageId": "UnusedWageId", 

                        "WorkPercent": "100", 

                        "PositionDescription": "second in chain, primary", 

                        "WageGroupId": "10" 

                    }, 

                    { 

                        "PositionId": "1177",                         

                        "PositionDescription": "Updated Position Description" 

                    } 

                ] 

            } 

        ] 

    } 

 



 

21 
 

Confidential 

Example return values on completion of import  

{"status":6,"transactions":1} 

 

See 7.1 for a full list of fields for the Header, Employee and Position entries, as well as a description of the 

status codes returned. 

  



 

22 
 

Confidential 

 

2.4.4.5 HTTP GET /export/schematimesf 

Exports employee working hours per day per employee/position in the specified period. Specifically created to support 

Success Factors. 

 

Input: 

{ 
    "employeeId": 1763, 
    "startPeriod": "202009", 
    "endPeriod": "202012" 

} 

Note: startPeriod and endPeriod are on the format yyyyMM. 

 

Returns an array with working hours per day in the specified period (truncated example): 

{ 
    "WorkScheduleData": [ 
        { 
            "employeeId": "1763", 
            "period": "202009", 
            "day": 1, 
            "hours": 0.0 
        }, 
        { 
            "employeeId": "1763", 
            "period": "2002009", 
            "day": 2, 
            "hours": 7.5 
        }, 
        ... 
    ] 

} 

 

NOTE: This endpoint is no longer included in the SWAGGER documentation, since it is an HTTP GET operation with 

a request body, which does not conform to the rules, and did not validate with https://editor.swagger.io/ In a future 

version of WinTidAPI this endpoint will change from HTTP GET to HTTP POST to become compliant. 

 

 

2.4.4.6 HTTP POST /absencessf 

Accepts planned absences and sick leaves into the absence handling process integration (full-day absences only) 

Absences are added to the absence import queue in integration_absence_import table in WinTid, and attempted 

imported into WinTid as absences. Any that fail will be retained in the integration table with some status information, 

and can be manually inspected and import retried or rejected via the absence import UI. 

curl -X POST -H "Content-Type: application/json" -d '{ 

"ExternalId":777,"EmployeeID":1777, "CorrelationId":"22753",  

"StartDate":"20201231", "EndDate":"20201231", 

"ExternalAbsenceCode":30, "ApprovalStatus": "Approved", "AbsencePercent":100 

}' http://localhost:5000/absencesf 

https://editor.swagger.io/
http://localhost:5000/absence


 

23 
 

Confidential 

 

Parameter Name Description 

externalId Unique id generated by the caller (External system) 

employeeId external_employee_id 

correlationId position_correlation_id (string) – which position chain this absence belongs to 
(Optional – this parameter is not required) 

startDate Start date of absence (yyyyMMdd) 

endDate End date of absence (yyyyMMdd) 

externalAbsenceCode Absence code from the external system will be mapped to WinTid codes via 
mapping tables integration_Externalsystem and integration_absencecode_in 

approvalStatus Approved / Cancelled (Cancelled = delete) 

absencePercent Percentage of the absence. Should be 100 for most absences, but a partial 
absence could have a lower value. 

 

In order to use this endpoint, some configuration of winTid is required: 

1. Table integration_externalsystem must be populated with a system 

2. Table integration_absencecode_in must be populated with the mapping of absencecodes from the external 

system and to WinTid absence codes, for the system defined in 1. above. 

3. Table integration_abscodes_delete can optionally be populated with a list of WinTid absence codes that 

should be replaced by other imported absences (to support functionality such as replacing employee-

registered absence with a sick leave from the external system). 

4. WinTid API must have the appSetting key absenceIntegrationSystemId set to the system id defined 

in 1. Above. 

 

- Absences that fail validation can be manually checked in the MinWinTid Absence Import page. If manual 

resolution of the failure has been done, importing the absence can be retried from this page. Alternatively an 

absence can be dismissed and will then be archived. 

- Absences that do not have a mapping to a WinTid abensecode will fail 

- Absences imported, that overlap with other existing absences will fail (unless the existing absence in WinTid 

has an absence code in integration_abscodes_delete  and the imported absence completely overlaps it.) 

- Absences imported with approvalStatus = CANCELLED will be removed from WinTid. 

- Not using a correlation id at all will attach the absence to the default position chain (correlation id is 

__default). 

- Using a correlation id will attach the absence to the position in a position chain with that correlation id. If a 

position does not exist in that chain for the absence interval, it will fail. 

- If the absence is in a period that has been approved, it will fail. 

- Only all-day-absences are currently supported. 

 

Example 

curl -X POST -H "Content-Type: application/json" -d ' { 

    "AbsenceData": [ 



 

24 
 

Confidential 

        { 

            "externalId": "abcf65324b2a47e9add043ea528798ec ", 

            "employeeId": "11", 

            "startDate": "20190317", 

            "endDate": "20190325", 

            "absencePercentage": "95", 

            "externalAbsenceCode": "NOR_SickWithCertificate", 

            "approvalStatus": "APPROVED" 

        }, 

        { 

            "externalId": "fg3f65324b2a47e9add043ea528798ec ", 

            "employeeId": "7", 

            "startDate": "20190301", 

            "endDate": "20190303", 

            "absencePercentage": "69", 

            "externalAbsenceCode": "NOR_UnpaidLeave_F", 

            "approvalStatus": "CANCELLED" 

        }]}' http://localhost:5000/absencessf 

 

2.4.4.7 HTTP GET /employee/lookupbyusername/{username} 

Allows looking up the EmployeeId (external_employee_id in Wintid) based on the username. 

curl http://localhost:5000/employee/lookupbyusername/haveraaenh  

HTTP/1.1 200 OK 

{ 

"EmployeeId":17524 

} 

 

curl http://localhost:5000/employee/lookupbyusername/nonexisting  

HTTP/1.1 404 Not Found 

{ 

"Message":"Employee not found", 

"Type":"", 

"Status":"succeeded" 

} 

 

 

2.4.4.8 HTTP GET /employeeposition/lookupbypositionid/{positionid} 

Allows checking if any position exists that contains the specified external_position_id. 

 

Example looking up by existing external_position_id 

curl http://localhost:5000/employeeposition/lookupbypositionid/haveraaenh  

HTTP/1.1 200 OK 

http://localhost:5000/absencessf


 

25 
 

Confidential 

{ 

"Message":"Position found", 

"Type":"", 

"Status":"succeeded" 

} 

 

Example looking up by non-existing external_position_id 

curl http://localhost:5000/employeeposition/lookupbypositionid/id_not_used  

HTTP/1.1 404 Not Found 

{ 

"Message":"Position not found", 

"Type":"", 

"Status":"succeeded" 

} 

 

 

2.4.4.9 HTTP POST /addhistoricalselfdeclaredabsence 

Allows adding historical self-declared absences to WinTid. 

The endpoint supports adding multiple absences for multiple employees in one call. 

 

Example  

curl -X POST -H "Content-Type: application/json" -d '[ 

{"date":"2006-10-10T00:00:00.000Z","employeeId":1777}, 

{"date":"2006-10-10T00:00:00.000Z","employeeId":1778}, 

{"date":"2006-10-11T00:00:00.000Z","employeeId":1778} 

]' http://localhost:5000/addhistoricalselfdeclaredabsence 

 

 

 

2.4.5 Absencecode module 

 

Allows adding new absence codes to Wintid. 

 

HTTP POST /absencecode 

HTTP PUT /absencecode 

Input: 

{ 
 "Absencecode": 777, 
 "Name": "Travel" 
} 

 

http://localhost:5000/addhistoricalselfdeclaredabsence


 

26 
 

Confidential 

2.4.5.1 Examples 

curl -X POST -H "Content-Type: application/json" -d '{"Absencecode":777,"Name": "Travel"}' 

http://localhost:5000/absencecode 

 

 

2.4.6 Project allocation module 

 

A part of the Messagehub implementation where project allocation is sent to the service bus by MessageHub, and 

where updates from the service bus are pushed into Wintid by MessageHub. This API is not meant to be accessed 

directly but is used by MessageHub and is not documented in detail in this document. 

HTTP GET /export/projectallocationdays 

- lists all project allocations ready for export to MessageHub 

HTTP PUT /export/projectallocationdays/status 

- updates status on eported project allocation in exp_info table 

HTTP PUT/POST /projectallocationday 

- accepts project allocation updates from Messagehub and updates WinTid. 

HTTP POST /projectallocationday 

- accepts project allocation updates from Messagehub and updates WinTid. 

HTTP PUT /ep/projectallocationday/approval 

- updates and approves project allocation 

More detailed messagehub documentation is available upon request. 

 

 

2.4.7 Organization unit import module 

 

HTTP POST /import/organizationunit 

 

Allows importing new and updated departments. 

 

NOTE: If some departments fail to import, HTTP 400 Bad Request will be returned, although other departments in the 

same request might have been successfully imported. The response body will contain details on errors. 

 

This endpoint accepts a list of departments to import. 

Note: DepartmentIdType is accepted for historical reasons and is not required. N for numeric identifiers on 

departments, AN for alphanumeric identifiers on departments. This field is not currently used and instead the setting is 

checked against wt_system value avdeling_nr_alfa.  

Note: Included fields will be updated. Only the fields necessary for identifying the department are required. 

 

UnitType: What kind of organizational unit. Currently only supports “D” for Department. 

http://localhost:5000/


 

27 
 

Confidential 

UnitId: The numeric or alphanumeric identifier for the department 

UnitName: The Department name. 

ManagerEmployeeId: The external employee Id of the manager for the department. Must exist in Employee table in 

WinTid DB. 

 

• If UnitId represents an existing entry, the existing entry is renamed / manager updated. 

• If ManagerEmployeeId is an employee in WinTid that is currently not a manager, the import operation will 

configure the employee as a manager. This requires default values to be enabled and configured since a 

manager has some required fields that must be filled out, see 7.2 for more information. Importing an 

employee who is not a currently a manager in wintid, as a manger on a department, will fail if this is not 

configured. 

• A manager added to a department, will also be assigned the department and all employees in the department 

• A manager removed or replaced on a department will have the department and any employees in the 

department that were assigned, removed. 

 

A successful request will return HTTP 200 and the body will contain a Status and list number of Transactions 

If any errors occur, HTTP 400 is returned, along with Status, Transactions and an Exceptions array with all errors. 

 

HTTP POST /import/company 

 

Allows importing companies (Firma) into Wintid. 

 

curl -X POST -H "Content-Type: application/json" -d '{"Id":777,"Name": "BIM", 

"SelfDeclaredSickRuleId":2}' http://localhost:5000/import/company 

{ 

    "Message": "Company with id 777 imported." 

} 
 

curl -X POST -H "Content-Type: application/json" -d '{"Id":777,"Name": "BOM" 

}' http://localhost:5000/import/company 

 

{ 

    "Message": "Company with id 777 updated." 
} 

 

Fields: 

Id: Id of the company (firma_nr) 

Name: Name of company (firma_navn) 

SelfDeclaredSickRuleId: Which self declared sick rule applies to this company (egn_regel) 

 

Status: 

Status Name Description 

http://localhost:5000/
http://localhost:5000/


 

28 
 

Confidential 

0 NotStarted  

1 Parsing  

2 Processing  

3 Finishing 
Import has processed all entries, and is now doing cleanup (some like job import 
might postpone database updates to now) 

4 Failed Import stopped due to failure 

5 CompletedWithErrors Import ran to completion, but one or more records failed to be imported 

6 CompletedOk Import ran to completion and processed all records without errors. 

 

 

2.4.7.1 Examples 

 

JSON example: 

curl -v -X POST -H "Content-Type: application/json" -d '@/path/to/example.json' 

http://localhost:5000/import/organizationunit 

Returns: {"Status":6,"Transactions":2} 

 

example.json 

{ 

    "OrganizationalUnitImport": { 

        "Header": { 

            "Date": "2021-01-19", 

            "Sender": "WinTid", 

            "Type": "Organizational Unit Import", 

            "DepartmentIdType": "N" 

        }, 

        "OrganizationUnits": [ 

            { 

                "UnitType": "D", 

                "UnitId": "11115", 

                "UnitName": "Department 1" 

            }, 

            { 

                "UnitType": "D", 

                "UnitId": "D3", 

                "UnitName": "Department 3", 

                "ManagerEmployeeId": "26529" 

            } 

        ] 

    } 

} 

 

XML example: 



 

29 
 

Confidential 

curl -v -X POST -H "Content-Type: application/xml" -d '@/path/to/example.xml' 

http://localhost:5000/import/organizationunit 

 

Returns: {"Status":6,"Transactions":2} 

example.xml 

<?xml version="1.0" encoding="utf-8"?> 

<OrganizationalUnitImport xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:noNamespaceSchemaLocation="OrganizationUnit.xsd" > 

  <Header> 

    <Date>2008-09-11</Date> 

    <Sender>WinTid</Sender> 

    <Type>Organizational Unit Import</Type> 

    <DepartmentIdType>N</DepartmentIdType> 

  </Header> 

  <OrganizationUnits> 

   <OrganizationUnit> 

      <UnitType>D</UnitType> 

      <UnitId>11115</UnitId> 

      <UnitName>Department 1</UnitName> 

    </OrganizationUnit>  

    <OrganizationUnit> 

      <UnitType>D</UnitType> 

      <UnitId>D3</UnitId> 

      <UnitName>Department 3</UnitName> 

      <ManagerEmployeeId>25629</ManagerEmployeeId> 

    </OrganizationUnit> 

  </OrganizationUnits> 

</OrganizationalUnitImport> 
  



 

30 
 

Confidential 

2.4.8 Dynamic query module 

 

From version 16.8, WinTid API supports an approach to making customized queries for certain key data elements 

(initially results – daglig_resultat and related data). For every supported data type, WinTid comes with a default set of 

fields it returns, and that can be used to filter the requested data. 

If additional data is required, a custom view can be created for that type of data, and WinTidApi can be configured to 

override the default and use the custom view. This is done in appsettings.json for WinTidApi. Only one view can be 

used at a time of a specific type of data. 

Note that the custom view must contain all the fields of the original view, and the added data must be added to the 

view as CustomField1 up to CustomField15.  

When requesting data, filters can be used, and data will only be returned if it matches the values specified in the filter. 

Filters can also be applied to the custom fields – but note that they will be parsed as strings. 

All filters require an exact match, with the exception of dateFrom and dateTo which matches the date range, inclusive. 

By default a query is limited to returning the first 10 000 rows. This can be overridden in the filter by specifying a 

different number for MaxRows 

Note that the performance of this API endpoint will be affected by how the view is constructed and what data is filtered 

on, so it is important that consideration is made as to how much data will be requested in any single query. 

Disclaimer: The default views provided by WinTid should not be changed and should continue working with later 

versions. Any custom views added by the customer could be broken by changes in later versions of WinTid, and the 

customer is responsible for keeping them up to date. 

 

2.4.8.1 Daily results 

HTTP POST /api/dailyresults/dynamicquery 

Returns result data from the daglig_resultat table along with some relevant data from employee and job. The data is 

returned via the SQL view wintidapi_result_baseview.  

The view used can be overridden by setting FlexibleQueryDagligResultatViewto the name of the view to use, in the 

WinTidSettings section of WinTidApi appsettings.json 

 

The available fields are listed below 

Field name Description 

absenceTransferred Absence transfer status of the day of the result 

categoryId Category for the hours of the result 

categoryName Name of the category 

correctedResult Result in hours 

correctedResultMin Result in minutes 

correlationId External identifier for a position chain in WinTid 

date Date of the result 

dateFrom If specified, will return results no earlier than this date 

dateTo If specified, will return results no later than this date 



 

31 
 

Confidential 

dayApproved Approval status of the day of the result 

departmentId   

externalEmployeeId Employee identifier from external system 

externalPositionId Position identifier from external system 

firmId   

invoiceText Invoice text, if specified 

jobId Job identifier of the result 

jobName Name of the job 

jobStatus Status of the job (if applicable) 

maxRows 
The maximum number of rows to return in a call to the api endpoint. Default 10 
000 

pfield1Id Project field 1 identifier of the job (if applicable) 

pfield2Id Project field 2 identifier of the job (if applicable) 

pfield3Id Project field 3 identifier of the job (if applicable) 

pfield4Id Project field 4 identifier of the job (if applicable) 

pfield5Id Project field 5 identifier of the job (if applicable) 

productionTransferred Production transfer status of the day of the result 

salaryTableId Salary table on the employee position 

salaryTransferred Salary transfer status of the day of the result 

 

2.4.8.1.1 Curl examples 

Returns a maximum of 10 000 rows for Employee 9000 on November 15th 2011: 

curl -v -X "POST" https://localhost:5000/api/dailyresults/dynamicquery -H "Content-Type: 

application/json" -d "{\"filter\": {\"date\":\"2011-11-15T00:00:00\", 

\"externalEmployeeId\":9000}}" 

Returns a maximum of 100 000 rows for any employee for unapproved days between nov 1st and nov 30th: 

curl -v -X "POST" https://localhost:44314/api/dailyresults/dynamicquery -H "Content-Type: 

application/json" -d "{\"filter\": {\"dateFrom\":\"2011-11-01T00:00:00\", \"dateTo\":\"2011-11-

30T00:00:00\", \"dayApproved\":0, \"maxRows\":100000}}" 

 

2.4.8.1.2 Custom view example 

This example creates a view that adds kategori.kategori_kort_navn field as CustomField1. Note that any custom view 

MUST contain all the original fields, and can add up to 15 custom fields, called CustomField1 through CustomField15: 

create view wintidapi_result_custom as ( 

select wintidapi_result_baseview.*, k.kategori_kort_navn as CustomField1 from 

wintidapi_result_baseview join kategori k on wintidapi_result_baseview.category_id = k.kategori_nr 

) 

 



 

32 
 

Confidential 

Ensure to update WinTidApi appsettings.json to override which view to use: 

{ 
    "WinTidSettings": { 
        "FlexibleQueryDagligResultatView": "wintidapi_result_custom", 

Query results will now return CustomField1 containing the kategori_kort_navn field, and queries can be filtered on this 

field as well: 

curl -v -X "POST" https://localhost:5000/api/dailyresults/dynamicquery -H "Content-Type: 

application/json" -d "{\"filter\": { \"dateFrom\":\"2011-11-01T00:00:00\", \"dateTo\":\"2011-11-

30T00:00:00\", \"dayApproved\":0, \"customField1\":\"tjen-reis\"}}" 

  



 

33 
 

Confidential 

2.4.8.2 Employee 

HTTP POST /api/employee/dynamicquery 

Returns employee data from the employee and employee_position tables along with some relevant department and 

company data. The data is returned via the SQL view wintidapi_employee_baseview. 

The view used can be overridden by setting FlexibleQueryEmployeeView to the name of the view to use, in the 

WinTidSettings section of WinTidApi appsettings.json 

 

The available fields are listed below 

Field name Description 

accessGroupId  

advancedWorkHours  

approveOwnDays 1 if position can approve own days, otherwise 0 

birthDate  

canEnterQtyDefects True if this position can enter quantity and defects, otherwise false. 

canFinishJob True if this position can finish job, otherwise false. 

cardNumber  

firmId  

firmName  

costCenterId  

costCenterType  

defaultJobSelection  

deleted 
true if the position is deleted, otherwise false. Deleted positions are not included unless 
set to true in the filter. 

departmentId Internal id of the department 

departmentIdAlphanumeric Internal alphanumeric id of the department (if used) 

departmentName  

email  

employeeEndDate  

employeeId Employee identifier from external system 

employeeLastChangeDate  

employeeLastChangedBy The bruker_id of the manager/superuser who last made changes to the employee. 

employeeStartDate  

firstName  

gender Employee gender (0 – not specified, 1 – male, 2 – female, 3 - other) 

hourlyWage  

initials  

jobChoiceMethod 
How job search is configured for employee (0 – Job search, 1 – Job search with Pfield 
Addition, 2 – Pfield search) 



 

34 
 

Confidential 

lastName  

managerEmployeeId External employee id of this employee’s manager 

maxRows The maximum number of rows to return in a call to the api endpoint. Default 10 000 

maxSelfDeclaredLeave  

minWinTidAccess True if this position has access to MinWinTid, otherwise false 

notificationTypePreference 
What kind of push notification preference the employee has (-1 = disabled, 0 = no 
preference, 1 = web push, 2 = sms, 3 = email ) 

pfield1Id  

pfield2Id  

pfield3Id  

pfield4Id  

pfield5Id  

phone  

positionCategoryId  

crrelationId  

positionDescription  

positionEndDate  

positionId Position identifier from external system 

positionLastChangeDate  

positionLastChangedBy  

positionStartDate  

primaryPosition True if the position is tagged as a primary position, otherwise false 

projectSetupId  

salaryId  

salaryTableId  

selfDeclaredPeriod  

selfDeclaredRule  

selfDeclaredRuleFromDate  

selfDeclaredSickLeaveLock  

setupId  

sickChildAdjustment  

sickChildCountedInHours  

sickChildDays  

sickChildMaxDays  

sickChildMaxHours  

socialSecurityNumber  

soleCustody  



 

35 
 

Confidential 

userName  

vacationAllowanceCurrent  

vacationAllowanceLastYear  

vacationAllowanceOriginal  

vacationAllowanceWithoutPay  

vacationCountedInDays True if vacation counted in days, false if counted in hours. 

vacationRemaining  

vacationTaken  

vacationTransferYear  

vacationWithoutPayBalance  

varExtraDefaultType  

weekWorkHours  

workingPercentage  

 

2.4.8.2.1 Curl examples 

Returns a maximum of 10 000 rows of employees/positions with no vacation days remaining: 

$ curl -v -X "POST" https://localhost:5000/api/employee/dynamicquery -H "Content-Type: 

application/json" -d "{\"filter\": {\"vacationRemaining\":0}}" 

Returns a maximum of 100 000 rows of all employees in the Sales department: 

$ curl -v -X "POST" https://localhost:5000/api/employee/dynamicquery -H "Content-Type: 

application/json" -d "{\"filter\": {\"departmentName\":\"Sales\", \"maxRows\":100000}}" 

 

2.4.8.2.2 Custom view 

See Error! Reference source not found. for example of creating a custom view that contains all the original fields a

nd can add up to 15 custom fields. 

Ensure that the database user configured in WintidAPI kunde.config has access to the view. 

Ensure to update WinTidApi appsettings.json to override which view to use. Assuming the view is called 

wintidapi_employee_custom: 

{ 
    "WinTidSettings": { 
        "FlexibleQueryJobView": "wintidapi_employee_custom",  



 

36 
 

Confidential 

2.4.8.3 Job 

HTTP POST /api/job/dynamicquery 

Returns data from the jobb table. The data is returned via the SQL view wintidapi_job_baseview.  

The view used can be overridden by setting FlexibleQueryJobView to the name of the view to use, in the 

WinTidSettings section of WinTidApi appsettings.json 

 

The available fields are listed below 

Field name Description 

approved true if the job is approved, otherwise false 

budgetHours  

completed  

endDate Date job was stopped 

isDirectJob Direct job = true, Indirect job (internal) = false 

jobbAntall  

jobbProdAntall  

jobId Unique job identifier 

jobName Name of job 

maxRows The maximum number of rows to return in a call to the api endpoint. Default 10 000 

pField1Id Project field 1 identifier of the job (if applicable) 

pField2Id Project field 2 identifier of the job (if applicable) 

pField3Id Project field 3 identifier of the job (if applicable) 

pField4Id Project field 4 identifier of the job (if applicable) 

pField5Id Project field 5 identifier of the job (if applicable) 

plannedCompletionDate Planned job completion date 

plannedStartDate Planned job start date 

responsibleEmployeeId External employee id of employee responsible for job if any 

startDate Date job was started 

status Status of the job (-20, -10, -1, 0, 2 ,3 ,4) 

stopped true if the job has ended, otherwise false 

transferred true if the job has been transferred to external system, otherwise false 

 

2.4.8.3.1 Curl examples 

Returns a maximum of 10 000 rows of jobs with pfield1 set to 817a that have not yet been transferred: 

$ curl -v -X "POST" https://localhost:5000/api/job/dynamicquery -H "Content-Type: application/json" 

-d "{\"filter\": {\"pfield1Id\":\"817a\", \"transferred\":0}}" 

Returns a maximum of 100 000 rows of all approved jobs: 



 

37 
 

Confidential 

$ curl -v -X "POST" https://localhost:44314/api/dailyresults/dynamicquery -H "Content-Type: 

application/json" -d "{\"filter\": {\"approved\":1, \"maxRows\":100000}}" 

 

2.4.8.3.2 Custom view 

See Error! Reference source not found. for example of creating a custom view that contains all the original fields a

nd can add up to 15 custom fields. 

Ensure that the database user configured in WintidAPI kunde.config has access to the view. 

Ensure to update WinTidApi appsettings.json to override which view to use. Assuming the view is called 

wintidapi_job_custom: 

{ 
    "WinTidSettings": { 
        "FlexibleQueryJobView": "wintidapi_job_custom", 

  



 

38 
 

Confidential 

2.4.8.4 Work Environment Act (AML) 

HTTP POST /api/wea/dynamicquery  

Returns data from the aml_accumulated_sums table. The data is returned via the SQL view wintidapi_wea_baseview. 

The view used can be overridden by setting FlexibleQueryWeaView to the name of the view to use, in the 

WinTidSettings section of WinTidApi appsettings.json  

 

The available fields are listed below: 

Field name Description 

correlationId External identifier for a position chain in WinTid 

date Date for the WEA record 

dateFrom If specified, will return WEA records no earlier than this date 

dateTo If specified, will return WEA records no later than this date 

departmentId Id of the employee’s department 

departmentIdAlpha Alphanumeric id of the employee’s department – if used 

departmentName Department name 

employeeId Employee identifier from external system 

firmId Id of Firm (Company) 

firmName Name of Firm 

isFutureSum 
0 = This is actual calculated data (and in the past) 
1 = This is stipulation of future state, based on the planned work hours for the 
employee 

maxRows The maximum number of rows to return in a call to the api endpoint. Default 10 000 

overtime26Weeks 
How many overtime hours the employee has worked in the current 26-week period 
(assuming the employee overtime is counted in 26 and not 52-week intervals) 

overtime4Weeks How many hours of overtime the employee has worked in the current 4-week period 

overtime52Weeks 
How many overtime hours the employee has worked in the current 52-week period 
(assuming the employee overtime is counted in 52 and not 26-week intervals) 

overtimeCurrentWeek How many hours of overtime the employee has worked for the current week 

overtimeCurWeekStipulated Expected overtime hours for the current week, based on planned shifts. 

overtimeToday How much overtime the employee has worked today 

positionId Position identifier from external system 

setupId Id of the WEA setup configured for this employee 

violation26WkAvg 
1 if the employee on this date has violated their 26-week average working hours, 
otherwise 0 

violation52WkAvg 
1 if the employe on this date has violated their 52-week average working hours, 
otherwise 0 

violationAny 
1 if the employee on this day is in violation of any work hour or resting time rules, 0 if 
no rules are violated (and for isFutureSum=1, it is an expectation of a future violation 
based on current planned shifts) 

violationOvertime1Wk 1 if the employee on this day is in violation of their 1-week maximum overtime 

violationOvertime26Wk 1 if the employee on this day is in violation of their 26-week maximum overtime 



 

39 
 

Confidential 

violationOvertime4Wk 1 if the employee on this day is in violation of their 4-week maximum overtime 

violationOvertime52Wk 1 if the employee on this day is in violation of their 52-week maximum overtime 

violationRestDay 1 if the employee has not had the minimum continuous resting time between shifts 

violationRestDayHours Number of hours violating rest day, 0 if no violation. 

violationRestWeek 
1 if the employee has worked without allowing for the minimum continuous weekly 
resting time 

violvationRestWeekHours Number of hours violating rest week, 0 if no violation. 

violationWorkhours8WkAvg 
1 if the employee has worked too many hours on weekly average, for their current 8-
week window on this date. 

violationWorkhoursToday 1 if the employee has worked too many hours today, otherwise 0 

violationWorkhoursWeek 1 if the employee has worked too many hours this week, otherwise 0 

violationWrkhWeekStipulated 
1 if the employee is expected to work too many hours for the week on this date, 
otherwise 0 

workhours26WkAvg 
How many hours the employee will have worked on average in their current 26-week 
period, up until this date 

workhours26WkAvgStipulated 
How many hours the system believes the employee will have worked on weekly 
average in their current 26-week period, up until this date, based on planned shifts 

workhours52WkAvg 
How many hours the employee will have worked on average in their current 52-week 
period, up until this date 

workhours52WkAvgStipulated 
How many hours the system believes the employee will have worked on weekly 
average in their current 52-week period, up until this date, based on planned shifts 

workhours8WkAvgActual 
How many hours the employee has worked on weekly average in the current 8-week 
window 

workhours8WkAvgStipulated 
How many hours the system believes the employee will have worked on weekly 
average in the current 8-week window, based on planned shifts 

workhoursCurrentWeek How many hours the employee has worked this week 

workhoursToday How many hours the employee has worked today 

 

2.4.8.4.1 Curl examples 

Returns a maximum of 10 000 rows of wea data for the specified department, in Q1 2024 that have stipulated future 

wea violations based on expected working hours:  

Curl example filtering on department name, with a date range, returning any WEA entries that are stipulated into the 

future (isFutureSum), with any kind of AML violation ( 

curl -v -X "POST" https://localhost:5000/api/wea/dynamicquery -H "Content-Type: application/json" -

d "{\"filter\": {\"departmentName\":\"Maintenance\", \"ViolationAny\":true, \"isFutureSum\":true, 

\"dateFrom\":\"2024-01-01T00:00:00\", \"dateTo\":\"2024-03-31T00:00:00\"}}" 

 

2.4.8.4.2 Custom view 

 

{ 
    "WinTidSettings": { 
        "FlexibleQueryWeaView": "wintidapi_wea_custom", 

  



 

40 
 

Confidential 

 

2.4.8.5 Registration module 

HTTP POST /api/registration/dynamicquery  

Returns data from the stemplinger table. The data is returned via the SQL view wintidapi_registration_baseview. 

The view used can be overridden by setting FlexibleQueryRegistrationView to the name of the view to use, in the 

WinTidSettings section of WinTidApi appsettings.json 

 

The available fields are listed below: 

Field name Description 

absenceCode Absence code of the registration (if any) 

coreTime 1 if registration is within the Core time 

correlationId External identifier for a position chain in WinTid 

costCenterId Cost center id (for change cost center registrations) 

created When the registration record was added to the db 

date Date of the registration 

dateConsidered Date the registration applies to (could be the day before or after the actual registration) 

defects Number of defects 

departmentId The id of the department of the position making the registration 

departmentIdAlpha The Alphanumeric department id (if used) 

departmentName The name of the department of the position making the registration 

employeeId WinTid internal id of the employee. 

externalEmployeeId Employee identifier from external system 

externalPositionId Position identifier from external system 

extraId Extra id (for extra registrations) 

extraValue Extra value (for extra registrations) 

firmId Id of the firm the position that made the registration belongs to 

firmName Name of the firm the position that made the registration belongs to 

firstName Employee first name 

jobId Id of the job this registration applies to (if any) 

lastName Employee last name 

overtimeCode Overtime code of the registration (if any) 

pfield1  

pfield2  

pfield3  

pfield4  

pfield5  



 

41 
 

Confidential 

positionId WinTid internal id of the position 

quantity Number of produced items (for job registrations) 

registrationCode Currently not in use 

registrationDate The date the registration was done 

registrationDateConsidered The calculated date of the registration 

registrationDateTime Date and time of the registration 

registrationErrorCode Currently not in use 

registrationFlag 

1 = In due to wrong sequence 
2 = calculated out due to forgotten out registration 
3 = Currently not used 
4 = Currently not used 
5 = In due to planned absence start  
6 = Out due to planned absence end  
7 = Currently not used 
8 = Adjustment due to overtime code 
9 = Adjustment due to past midnight registration 
10 = Automatic in registration (calculated) 

registrationFlagName Norwegian description of the registration flag 

registrationReason The specified reason for the registration (if any) 

registrationTimeConsidered Time for registration after calculation (due to f ex rounding) 

registrationType Technical KABA name for registration (e.g. B1, B2, FE) 

registrationTypeName Norwegian description of the registration type 

registrationVersion 0= Original version. >0 = registration correction id 

returnDate Currently not in use 

returnTime Currently not in use 

sequenceNumber Unique sequence number for the registration 

terminalAddress 

The KABA address (gid/did) of the terminal where the registration originated eg @A 
(note, some internal identifiers also exist that start with X and do not identify a KABA 
terminal) 

terminalLocation An optional description of where the terminal is located 

time Time of registration 

userId User id of a manager/superuser who added/edited a registration  

 

 

2.4.8.5.1 Curl examples 

Returns a maximum of 10 000 rows of registrations for the specified department, in Q1 2024 that have stipulated 

future wea violations based on expected working hours:  

Curl example retrieving all Inn registrations for employee with external employee id 104: 

curl -v -X "POST" https://localhost:5000/api/registration/dynamicquery -H "Content-Type: 

application/json" -d "{\"filter\": {\"externalEmployeeId\":104, \"registrationTypeName\":\"Inn\"}}" 

 

  



 

42 
 

Confidential 

2.4.8.5.2 Custom view 
 
{ 
    "WinTidSettings": { 
        "FlexibleQueryRegistrationView": "wintidapi_registration_custom", 

 

  



 

43 
 

Confidential 

2.4.9 Export to API module 

 

HTTP POST/PUT /exportToApi/UpdateRecordReceipts 

 

Allows updating the status, external error code and external error messages of existing records within the 

api_export_absence_data and api_export_various_data tables. 

 

This endpoint accepts a list of records to update. 

 

NOTE: The operation will fail if any of the records are not of a various or an absence export type. 

NOTE: The operation will fail if any of the records have provided an error code that is different from 0 but an error 

message is missing. 

NOTE: The operation will fail if any of the records have provided invalid RowIds which don’t match the ones in the 

database. 

 

Fields: 

• ExportType: What kind of a record is this. Any other value will result in an error. 

ExportType Name Description 

0 Mustering Various export 

1 Cost Center Various export 

2 Absence Absence export 

3 Various - Production Various export 

 

• RowSendingId: The numeric (integer) identifier for the record to update. If this row id is not found in the 

database an error will be thrown. 

• ErrorCode: The numeric (integer) error code. 0 if the record was updated fine and no error exists. Any other 

value also requires a non-empty ErrorMessage and will set the status of this record to be Rejected by the 

external system. 

• ErrorMessage: The string message of the reason for the error with a maximum limit of 512 characters. This 

will be shown in the Failed Transactions Overview page to the user. 

 

A successful request will return HTTP 200. If any errors occur, HTTP 500 is returned along with the Status and the 

Exception. 

 

Refer to Swagger for any examples regarding this endpoint. 

 

 



 

44 
 

Confidential 

3 File based imports 
 

Wintid supports scheduled and ad-hoc import of new and updated data from files for a number of central entities in the 

system, including: 

- Employees 

- Departments 

- Jobs / Projects 

- Pfields 

- Result corrections 

- Inndata (relevant when using physical KABA terminals) 

 

This chapter details the different file-based import types. 

 

3.1 Automating file-based imports 

Wintid includes a WintidIntegrationService, a Windows service that is configured in Wintid. It can be set to 

automatically import all files of the specific import type from a source folder. 

3.2 Import file formats and header 

All imports support XML format as defined by the XML schema files provided with Wintid (for example 

EmployeeSchema.xsd). All import files should have the same prefix as the entitytype, for example 

EmployeeImportDec2020.xml, and must pass XML validation against the XML schema for that import type. 

Every XML import file begins with a header, that contains the following fields 

Header field name Description 

Date 
When the import applies. This can be important for example when importing updates that apply 
on a specific date, for example an updated calendar assignment to an employee, or a change 

that creates a new position. If Date is not specified, the date of the import is assumed. 

Sender Can be used to indicate where the import data comes from 

Type 

Must be set to the correct string based on the import type, or import will fail: 

Employee Import 
Organizational Unit Import 
Balance Import 
Pfelt Import 
Job Import 

DepartmentType 

Indicates whether departments are identified by numeric id or by alphanumeric id. Legal values 
are: 

AN   - Alphanumeric 
N   - Numeric 

 

 

 

3.3 Employee import 



 

45 
 

Confidential 

Allows importing new and updated employees. For deleting employees, a resignation date can be imported, but 

employees cannot be directly deleted using employee import. Wintid schedules a job to delete resigned employees 

after a configurable retention period. Note that one import file can contain many employees 

See EmployeeSchema.xsd for details. 

 

3.3.1 Example import file 

Many fields are optional, so an actual import file will often be far smaller in scope. The below example sets the end 

date and updates the Pfield1 filter on employee with ExternalEmployeeId 1673. 

<?xml version="1.0" encoding="iso-8859-1"?> 
<EmployeeImport xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="EmployeeSchema.xsd" > 
  <Header> 
    <Date>2020-10-16</Date> 
    <Sender>Excel</Sender> 
    <Type>Employee Import</Type> 
    <DepartmentType>N</DepartmentType> 
  </Header> 
  <Employees> 
    <Employee> 
      <EmployeeImportType>Change</EmployeeImportType> 
      <EmployeeId>1673</EmployeeId> 
      <EngageToDate>2021-01-01</EngageToDate> 
      <Pfield1>5</Pfield1> 
    </Employee> 
  </Employees> 

</EmployeeImport> 

 

3.4 Organizational unit import 

Allows importing new and updated departments into the Avdeling table in Wintid.Currently only allows importing 

departments, which means the UnitType must be “D” in the importfile. 

See OrganizationUnit.xsd for details. 

 

3.4.1 Example import file 
The below file imports 2 departments. 

<?xml version="1.0" encoding="utf-8"?> 
<OrganizationalUnitImport xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="OrganizationUnit.xsd" > 
  <Header> 
    <Date>2020-09-11</Date> 
    <Sender>WinTid</Sender> 
    <Type>Organizational Unit Import</Type> 
    <DepartmentIdType>AN</DepartmentIdType> 
  </Header> 
  <OrganizationUnits> 
    <OrganizationUnit> 
      <UnitType>D</UnitType> 
      <UnitId>D1x</UnitId> 
      <UnitName>Department 1</UnitName> 
    </OrganizationUnit> 
    <OrganizationUnit> 



 

46 
 

Confidential 

      <UnitType>D</UnitType> 
      <UnitId>D2x</UnitId> 
      <UnitName>Department 2</UnitName> 
    </OrganizationUnit> 
  </OrganizationUnits> 

</OrganizationalUnitImport> 

 

3.5 Job / Project import 

Allows importing jobs/projects/cost centers into Wintid jobb table. 

Note that new pfields specified in on a job in the import file, or pfields with updated names, will also update those 

pfields in the respective pfeltN table in Wintid – as long as Wintid is configured to allow this. 

 

See JobSchema.xsd for details on the format of the job XML. 

NOTE: The Job import also supports importing jobs in CSV format. 

 

3.5.1 Example import file 

 

<?xml version="1.0" encoding="utf-8"?> 
<JobImport xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="JobSchema.xsd" > 
  <Header> 
    <Date>2020-09-11</Date> 
    <Sender>Agresso</Sender> 
    <Type>Job Import</Type> 
  </Header> 
  <Jobs> 
    <Job> 
      <JobStatus>-1</JobStatus> 
      <JobId></JobId> 
      <JobName> Integration-Design </JobName> 
      <Pfield1No>111</Pfield1No> 
      <Pfield1Name>SupportTeam</Pfield1Name> 
      <Pfield2No>222</Pfield2No> 
      <Pfield2Name>ReleaseTeam</Pfield2Name> 
      <Pfield3No></Pfield3No> 
      <Pfield3Name></Pfield3Name> 
      <Pfield4No>111</Pfield4No> 
      <Pfield4Name>DyNamicsteam</Pfield4Name> 
      <Pfield5No></Pfield5No> 
      <Pfield5Name></Pfield5Name> 
      <JobBudget>11,5000</JobBudget> 
      <JobPlannedStartDate>2020-09-11</JobPlannedStartDate > 
      <JobPlannedEndDate>2022-01-01</JobPlannedEndDate> 
      <JobCardPrintedOut>0</JobCardPrintedOut > 
      <JobCompleted>0</JobCompleted> 
      <Finished>0</Finished> 
      <Approved>0</Approved> 
      <Transferred>0</Transferred> 
    </Job> 
  </Jobs> 

</JobImport> 

 



 

47 
 

Confidential 

Note: Job import also supports import via CSV format, as in the below example (copy into a separate file for better 

viewing.): 

JobStatus;JobId;JobName;Pfield1No;Pfield1Name;Pfield2No;Pfield2Name;Pfield3No;Pfield3Name;Pfield4No;Pfiel

d4Name;Pfield5No;Pfield5Name;JobBudget;JobPlannedStartDate;JobPlannedEndDate;JobCardPrintedOut;JobComplet

ed;Finished;Approved;Transferred 

-1;; Integration-Design ;111;SupportTeam;222;ReleaseTeam;;;111;Dynamicsteam;;;11,5000;2009-07-30;2009-06-30;0;1;1;1;1 

-1;; Integration-Design ;111;SupportTeam;777;Tester;;;111;Dynamicsteam;;;11,5000;2009-07-30;2009-06-30;0;1;1;1;1 

 

3.6 Pfield import 

Allows import of new and updated Pfields to the respective pfeltN tables in Wintid. 

See PFieldSchema.xsd for details. 

 

3.6.1 Example import file 

The below import file imports one pfield at each level 1-5. 

<?xml version="1.0" encoding="utf-8"?> 
<PfeltImport xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="PfeltUnit.xsd" > 
  <Header> 
    <Date>2008-09-11</Date> 
    <Sender>WinTid</Sender> 
    <Type>Pfelt Import</Type> 
  </Header> 
  <PfeltUnits> 
    <PfeltUnit> 
      <PfeltType>1</PfeltType> 
      <PfeltId>8101</PfeltId> 
      <PfeltName>Pfelt11</PfeltName> 
    </PfeltUnit> 
    <PfeltUnit> 
      <PfeltType>2</PfeltType> 
      <PfeltId>8201</PfeltId> 
      <PfeltName>Pfelt22</PfeltName> 
    </PfeltUnit> 
    <PfeltUnit> 
      <PfeltType>3</PfeltType> 
      <PfeltId>8301</PfeltId> 
      <PfeltName>Pfelt33</PfeltName> 
    </PfeltUnit> 
    <PfeltUnit> 
      <PfeltType>4</PfeltType> 
      <PfeltId>8401</PfeltId> 
      <PfeltName>Pfelt44</PfeltName> 
    </PfeltUnit> 
    <PfeltUnit> 
      <PfeltType>5</PfeltType> 
      <PfeltId>8501</PfeltId> 
      <PfeltName>Pfelt55</PfeltName> 
    </PfeltUnit> 
    <PfeltUnit> 
      <PfeltType>5</PfeltType> 
      <PfeltId>8501</PfeltId> 
      <PfeltName>Pfelt5</PfeltName> 
    </PfeltUnit> 



 

48 
 

Confidential 

  </PfeltUnits> 

</PfeltImport> 

 

3.7 Balance import 

Allows overriding the day/hour balances for an employee on a given category and date. 

See BalanceSchema.xsd for details. 

 

3.7.1 Example import file 

The below example file shows updating the balance on category 2 for employee with ExternalEmployeeId 1672 on 

May 18th 2020, setting a new balance to 10.4 hours. 

<?xml version="1.0" encoding="utf-8"?> 
<BalanceImport xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="BalanceSchema.xsd"> 
  <Header> 
    <Date>2008-11-11</Date> 
    <Sender>SAP</Sender> 
    <Type>Balance Import</Type> 
  </Header> 
  <ResultCorrections> 
    <ResultCorrection> 
      <EmployeeId>1672</EmployeeId> 
      <Date>2020-05-18</Date> 
      <CategoryNo>2</CategoryNo> 
      <Balance>10.4</Balance> 
      <CorrectionType>3</CorrectionType> 
    </ResultCorrection> 
  </ResultCorrections> 

</BalanceImport> 

 



 

49 
 

Confidential 

4 File based exports 
File based exports are mainly out of scope for this document, but an overview is included for completeness. 

 

Wintid has flexible support for custom export formats for file-based exports of the following central Wintid data: 

- Results / hours 

- Absences 

- Working hours 

Custom export file formats can be defined for common formats like fixed-length, CSV and XML, using UTF-8 or iso-

8859-1 encoding. 

Exports can be scheduled to run automatically. 

For more details on managing exports from Wintid, please see Wintid brukerdokumentasjon. 

 

Note: Most exports will run in a parallelized fashion, utilizing all logical CPU cores on the machine. In some scenarios 

this might put too high a load on either the application server or the database server. The degree of parallelization can 

be adjusted by adding the parallellisering parameter to the kunde.config file of the application in question: 

<WebApplikasjonsInnstillinger 
type="Ementor.Medina.ApplikasjonsInnstillinger.WebApplikasjonsInnstillinger, Ementor.Medina,   
Culture=neutral" 
 parallellisering="3" 
 
... 

 

/> 

 



 

50 
 

Confidential 

5 API based exports 

5.1 Introduction 

Wintid supports export of mustering, production, cost center and absence data to an external API. This follows the 

same broad process as a file-based export, except that instead of exporting the data to a file, it is exported to internal 

export tables, and from there will be posted to the configured external API. 

The API based exports also supports a receipt mechanism, where an external system can call back to a receipt 

endpoint provided by WinTid API that allows the external system to mark any transaction as rejected or accepted. 

Rejected transactions will lead to an email sent out to the configured manager for the affected employee(s) according 

to the configured WinTid Scheduler job schedule. These transactions will be available to the manager for review in the 

Failed Transaction Overview page, where the manager can see the reasons for the failure, and either dismiss the 

transaction(s) or attempt to re-send them after manually correcting the cause. 

5.2 Formats 

The API-based export currently supports a JSON format that is defined in the Export Configuration page. The 

supported formats are the same for file exports and export to api, with the one difference that an export to API can be 

split into multiple calls. 

Note: If the receipt API is to be used to reject/accept transactions, then the format needs to include the row sending id 

so it is available to the external system, as this id is used to identify the specific transaction to reject or accept. 

 

Simple example json format: 

[ 

    { 

        "rowSendingId": "784", 

        "employeeId": "1234567", 

        "date": "2022-03-04", 

        "wagetype": "121", 

        "result": "7.00" 

    }, 

    { 

        "rowSendingId": "785", 

        "employeeId": "1234568", 

        "date": "2022-03-04", 

        "wagetype": "121", 

        "result": "2.50" 

    } 

] 

 

 

5.3 Process 

When an export to API is executed, either via the Manual Export page or scheduled by Wintid Integration Server, the 

data is retrieved from WinTid, written to export tables, and usually configured to be marked as transferred. For all 



 

51 
 

Confidential 

intents and purposes the data has now been exported from WinTid. In the export tables, any added rows will have the 

status new. 

Immediately after the data has been exported, it will be attempted posted to the external API. Depending upon the api 

configuration in WinTid this could be a single post of all transaction or several calls – up to one call per transaction. All 

rows that are successfully posted will have their status changed to sent in the export tables. Any rows that fail to be 

posted for whatever reason, will retain their status as new. 

If the Export Configuration is set up to mark rows as transferred, re-running the export will not add any new rows to 

the export tables (unless there are new rows, for example if the export selection criteria are changed). However, all 

new and existing rows connected to the same Export Setup with the status new will be attempted sent. This allows 

rows that were unable to be sent earlier due to transient errors, to be sent at the next opportunity. 

 

 

5.4 Api configuration 

API based exports are enabled by creating a JSON format export that is configured to transfer via API and by adding 

the API-specific configuration settings of URL, Authentication settings and how many rows to export in each call to the 

external API (set to 0 to indicate that all rows can be sent in a single call). 

The currently supported authentication schemes is HTTP Basic authentication and JWT Bearer authentication. 

 

HTTP Basic authentication adds an Authorization header to all the calls: 

Authorization: Basic YXBpdXNlcjpzb21lbWFnaWNwYXNzd29yZA== 

Where the specified username and password are concatenated with a colon and base-64 encoded. 

 

JWT Bearer authentication adds the following header: 

Authorization: Bearer EhZxD6p64LcNDnxB 

Where the specified bearer token is used. 



 

52 
 

Confidential 

 

5.5 Receipt endpoint 

The receipt endpoint is documented under WinTid API in 2.4.8  

By providing the row sending id of a transaction that has been successfully posted by WinTid to the external API, any 

exported transaction can be marked in the WinTid export tables as accepted or rejected. If it is marked as a rejected, 

the caller must also provide an error code and error message, that will be available for review in the Failed 

Transaction Overview Page in WinTid. 

For marking a transaction accepted, no more information is required. 

 

The receipt endpoint expects a json array with one or more receipts – it is fine to batch receipts for performance 

reasons. 

 

5.6 Notes on the row sending id  

The row sending id is a unique id per export type. This means that the same id can appear both in a mustering export 

and an absence export for example. 

Use the row sending id along with the export type to uniquely identify a transaction to accept/reject. 

After a manager has reviewed failed transactions in the Failed Transaction Overview Page and attempts to re-send 

them, they will be sent with a new row sending id, and any further accept/reject calls to the Receipt Endpoint must 

use this new id to accept/reject the transaction. 

The row sending id is only set by the API export process, so if an export is configured to include the row sending id 

and export to a file, then it will only contain the value -1 



 

53 
 

Confidential 

6 WinTid Integrationservice 
Note: This service is not actively being developed and will be deprecated in a later version of WinTid. 

Wintid Integrationservice is an IIS-hosted Soap 1.1 compatible web service that provides a number of integration 

points with Wintid. 

The integration points can be explored from a browser by opening /WintidIntegrationServer.asmx 

Additionally, it is self-describing using WSDL that can be reached at /WintidIntegrationServer.asmx?WSDL and allows 

a number of modern programming languages to automatically create plumbing code to access the functionality (for 

example by adding a service reference in a Visual Studio .net project) 

 

 

6.1 Integration points 

 

6.1.1 DoFileImport 

Allows the triggering of a pre-configured file import by an external service 

 

6.1.2 GetDepartmentInfo 
Returns a list of all departments 

 

6.1.3 GetEmployeeInfoAll 
Returns a list of every position in the database (note that employees with multiple positions could appear multiple 

times) 

 

6.1.4 GetEmployeeInfoInDepartment 

Returns a list of every position in the specified department (note that employees with multiple positions could appear 

multiple times) 

 

6.1.5 GetEmployeeInfoInFirm 

Returns a list of every position in the specified Firm (note that employees with multiple positions could appear multiple 

times) 

 

6.1.6 GetFirmInfo 

Returns a list of all Firms defined in Wintid 

 

6.1.7 GetHistoricalAbsence 
Given a date range and list of ExternalEmployeeIds, returns one entry for each employee/date/category of absence 

from daglig_resultat table. 

 



 

54 
 

Confidential 

6.1.8 GetResultsInHours 

Given a date range, a list of ExternalEmployeeIds and an approval level, returns one entry for each 

employee/date/category of results from daglig_resultat where the approval level is at least as high as requested. 

 

6.1.9 GetScheduledAbsence 

Returns a list of planned absences for the specified positions in the specified date range. This includes both data from 

planlagt_fravaer as well as ansatt_avvik in Wintid. 

 

6.1.10 GetSchemaInfo 

Returns basic information on all calculation schemes in Wintid, including number of working hours, start and end of 

core working time and absence times. 

 

6.1.11 GetSchemaInfoBySchemaId 
Returns basic information on the specified calculation scheme, including number of working hours, start and end of 

core working time and absence times. 

 

6.1.12 GetSchemaTime 

Returns information on which schema is used by all requested positions on all requested days.  

 

6.1.13 ImportProjectResult 

Imports a new or updated project result on the specified position id, date, category and job/project. 

 

6.1.14 UpdateSchemaTime 
Updates which calculation scheme an employee position is assigned to on a specific date.  



 

55 
 

Confidential 

7 References 

7.1 Employee import field overview 

 

7.1.1 Header fields 

 

7.1.2 Employee fields 

Import field Description 

Date 

Date for when the imported data applies. This is relevant since some of 
the imported data will be tagged with this date, known as “Header date”. 
If not set, uses the current date at the time of the import. 

Format: YYYY-MM-DD 

Sender Information string of the source of data 

Type Type of import. Should be set to “Employee Import” 

DepartmentType 
Defaults to “N” for numeric. Set to “AN” if this WinTid installation uses 
alphanumeric department identifiers. 

Import field Table Table column Notes 

DateOfBirth Employee birth_date Format: YYYY-MM-DD 

Email Employee email 
Supports a comma-separated list of emails, up to 512 
characters e.g. “on@test.com, ola.nordmann@test.com” 

EmployeeId Employee external_employee_id  

EmployeeImportType     Not used by the WinTidAPI imports 

EngageFromDate Employee employee_start_date  

EngageToDate Employee employee_end_date Set to 2000-01-01 to change end date to open-ended 

EntitleHoliday Employee vacation_allowance_current  

FirstName Employee first_name  

Initials Employee Initials  

LastName Employee last_name  

NewEmployeeId employee external_employee_id Set this to change the external_employee_id of the employee. 

optionalTexts ansatt_fritekst ansatt_fritekst_tekst 

"optionalTexts":[    
 {"textID":"pfelt1","textValue":"Unit"},  
 {"textID":"pfelt2","textValue":"Test"} 

] 
Can contain an array/list of names and values. Note that the textID is 
the dbo.fritekst.fritekst_id, not fritekst_navn. 

OriginalHolidayValue Employee vacation_allowance_original  

Password Employee password  

Sex Employee gender  



 

56 
 

Confidential 

 

 

7.1.3 Position fields 

Import field Table Table column Notes 

ApplicationSetupId Employee_Position setup_id  

CalendarFromDate ansatt_kalender kalender_fra_dato  

CalendarId ansatt_kalender kalender_nr 

Adds the specified calendar id on the date specified by 
CalendarFromDate, or position start date if CalendarFromDate is 
not specified.  

CardId Employee_Position card_number  

CorrelationId employee_Position position_correlation_id 

If set, indicates that the position is in a chain of connected 
positions, with all other positions on the same employee that 
share the same correlationId 

CostCenterFromDate ansatt_ksted ksted_fradato 

If Cost Center Levels are specified, uses this date to configure 
cost centers 

CostCenterLevel1 ansatt_ksted ksted_nr 
This value along with the company setting on the position is used 
to set the correct cost center 

CostCenterLevel2 ansatt_ksted ksted_nr 
This value along with the company setting on the position is used 
to set the correct cost center 

CostCenterLevel3 ansatt_ksted ksted_nr 
This value along with the company setting on the position is used 
to set the correct cost center 

CostCenterLevel4 ansatt_ksted ksted_nr 
This value along with the company setting on the position is used 
to set the correct cost center 

CostCenterLevel5 ansatt_ksted ksted_nr 
This value along with the company setting on the position is used 
to set the correct cost center 

Deleted employee_position deleted 

Marks the position as deleted if this field is set to true. Is 
optional and can be omitted, false value is disregarded. 

Note:  only supported in the 2.4.4.3 endpoint at 
import/employeeandposition  

DepartmentId Employee_Position department_id  

FirmId Employee_Position company_id  

FixedOvertimeFromDate Fast_overtidskode fast_overtidskode_fra_dato  

FixedOvertimeId Fast_overtidskode overtidskode_nr 

Adds the specified FixedOvertimeId to the date specified by 
FixedOvertimeFromDate, or position start date if 
FixedOvertimeFromDate is not specified. 

IsPrimaryPosition Employee_Position primary_position  

ManagerEmployeeId Employee_Position manager_employee_id 
Set this to the External_employee_id of the manager. Will set 
the correct employee_id on the position. 

Pfield1 Employee_Position pfield1_id  

Pfield1Filter employee_pos_pfield_filter pfield_filter  

SocialSecurityNumber Employee social_security_number  

Phone Employee phone  



 

57 
 

Confidential 

Pfield2 Employee_Position pfield2_id  

Pfield2Filter employee_pos_pfield_filter pfield_filter  

Pfield3 Employee_Position pfield3_id  

Pfield3Filter employee_pos_pfield_filter pfield_filter  

Pfield4 Employee_Position pfield4_id  

Pfield4Filter employee_pos_pfield_filter pfield_filter  

Pfield5 Employee_Position pfield5_id  

Pfield5Filter employee_pos_pfield_filter pfield_filter  

PositionCategoryId Employee_Position position_category_id  

PositionDescription Employee_Position description  

PositionEndDate Employee_Position position_end_date  

PositionId Employee_Position external_position_id  

PositionStartDate Employee_Position position_start_date  

ProjectSetupId Employee_Position project_setup_id  

WageGroupFromDate Ansatt_lonnsgruppe ansatt_lonnsgruppe_fra_dato  

WageGroupId Ansatt_lonnsgruppe lonnsgruppe_nr 

Adds the specified WageGroupId on the date specified in 
WageGroupFromDate, or on position start date if 
WageGroupFromDate is missing. 

WageId Employee_Position salary_id  

WageTypeTableId Employee_Position salary_table_id  

WorkPercent Employee_Position working_percentage  

WeekWorkHours Employee_Position week_work_hours  

HourlyWage Employee_Position hourly_wage  

 

7.1.4 Status codes 

Code Name Description 

0 NotStarted  

1 Parsing  

2 Processing  

3 Finishing 
Import has processed all entries, and is now doing cleanup (some like job import might 
postpone database updates until this point) 

4 Failed Import stopped due to failure 

5 CompletedWithErrors Import ran to completion, but one or more records failed to be imported 

6 CompletedOk Import ran to completion and processed all records without errors 

 



 

58 
 

Confidential 

7.1.5 Import example 
curl --location --request POST 'http://localhost:81/import/employees' \ 

--header 'Content-Type: application/json' \ 

--data-raw '{ 

    "EmployeeImport": { 

        "Header": { 

            "Date": "2021-08-30", 

            "Sender": "Agresso", 

            "Type": "Employee Import", 

            "DepartmentType": "N" 

        }, 

        "Employees": [ 

            { 

                "EmployeeImportType": "New", 

                "EmployeeId": "1701", 

                "PositionId": "1701_1", 

                "LastName": "Some", 

                "FirstName": "Body", 

                "Sex":"K", 

                "DateOfBirth":"1971-08-23", 

                "EngageFromDate":"2009-08-01", 

                "UserName":"somebody", 

                "Password":"wintid123", 

                "Email":"somebody@wintid.no", 

                "PositionDescription": "Første_stilling", 

                "PositionStartDate": "2021-09-03", 

                "PositionEndDate": "2099-12-31", 

                "FirmId": "100", 

                "DepartmentId": "20", 

                "ApplicationSetupId": "64", 

                "CardId": "7000", 

                "PositionCategoryId": "0", 

                "WageId": "7000", 

                "WageTypeTableId": "5", 

                "WorkPercent": "100", 

                "IsPrimaryPosition": "True", 

                "ManagerEmployeeId": "1610", 

                "ProjectSetupId": "1", 

                "CalendarId": "998", 

                "CalendarFromDate": "2021-09-03", 

                "FixedOvertimeId": "-1", 

                "WageGroupId": "10", 

                "CostCenterFromDate": "2021-03-09", 

                "CostCenterLevel1": "0017", 

  

                "Pfield1": "S_1001", 

                "Pfield1Filter": "S_*", 

                "Pfield2": "205", 

                "Pfield2Filter": "2*" 

            } 

mailto:somebody@wintid.no


 

59 
 

Confidential 

        ] 

    } 

} 

' 

7.2 Default values 

To import employees who are currently not managers in WinTid as a manager on a department, default values must 

be enabled.  

Enabling default values consists of two steps: 

Configure the path to the folder containing default values 

In WinTidApi this is done by adding a WinTidDefaultsDir entry in the WinTidSettings section of appsettings.json: 

    "WinTidSettings": { 

       "AbsenceIntegrationSystemId": "1", 

 "WinTidDefaultsDir": "C:\wintid\defaultvalues" 

    }, 

 

Place a json file in the folder defined above. The filename must begin with person e.g. persondefaults.json. The file 

contents are similar to the format of a snapshot import json, with a single employee and that employee having a single 

position entry. All fields available in snapshot import can be configured with a default value that is applied when a new 

employee or new position is created by snapshot import. Note that any fields supplied in the import file will override 

any default setting. 

 

Additionally, the employee can have a Manager section to define default settings that will be applied when 

organization unit import is used to set an employee as a manager on a department, when that employee is not yet 

configured as a manager in WinTid. At a minimum, the Manager section must include an ApplicationSetupId and a 

Usergroup to apply to any new managers, as these are required fields. The complete list of manager fields that can be 

set: 

• ApplicationSetupId 

• Usergroup 

• ApproveCostCenter 

• ApproveProject 

• UnaproveTransferred 

• FullSelfAccess 

• OverrideActivityAllocation 

 

Example person.json: 

{ 

    "EmployeeImport": { 

        "Header": { 

            "Date": "2021-10-30", 

            "Sender": "Agresso", 

            "Type": "Employee Import", 

            "DepartmentType": "N" 



 

60 
 

Confidential 

        }, 

        "Employees": [ 

            { 

                "EntitleHoliday": "25", 

                "OriginalHolidayValue": "25", 

                    "Positions": [ 

                        { 

                        "FirmId": "2", 

                        "ApplicationSetupId": "64", 

                        "WorkPercent": "100", 

                        "CalendarId": "300", 

                        "FixedOvertimeId": "1", 

                        "WageGroupId": "30", 

                        "Pfield1": "S_1001", 

                        "Pfield1Filter": "*", 

                        "Pfield2": "206" 

                        } 

                        ], 

                "Manager": { 

                    "ApplicationSetupId": "83", 

                    "Usergroup": "1", 

                    "ApproveCostCenter": "True", 

                    "ApproveProject": "True", 

                    "UnaproveTransferred": "true", 

                    "FullSelfAccess": "true", 

                    "OverrideActivityAllocation": "true" 

                } 

            } 

        ] 

    } 

} 

 

  



 

61 
 

Confidential 

7.3 Job import field overview 

Import field Table Table column Notes 

Approved jobb godkjent 
1 - job is approved, 0 - job is not 
approved 

div1   not used / customer specific 

JobBudget jobb jobb_budsjett job budget in hours 

JobCardPrintedOut jobb jobb_kort_utskrevet  

JobCompleted jobb avsluttet 
1 - job is completed, 0 - job is not 
completed 

JobId jobb jobb_nr unique job id 

JobName jobb jobb_navn unique job name 

JobNumber jobb jobb_antall quantity produced 

JobPlannedEndDate jobb jobb_plan_slutt  

JobPlannedStartDate jobb jobb_plan_start  

JobProducedNumber jobb jobb_prod_antall  

JobStatus jobb jobb_status 

Job status: 
-1: Planned (not started) 
0: Ongoing 
1: Stopped 
2: Completed 
3: Totally Finished 
4: Discontinued / Expired 

Pfield1Name pfelt1 pfelt1_navn 

The Pfield name of a new or existing 
pfield 

Pfield1No jobb, pfelt1 pfelt1_nr 

The pfield number of a new or existing 
pfield 

Pfield2Name pfelt2 pfelt2_navn 

The Pfield name of a new or existing 
pfield 

Pfield2No jobb, pfelt2 pfelt2_nr 

The pfield number of a new or existing 
pfield 

Pfield3Name pfelt3 pfelt3_navn 

The Pfield name of a new or existing 
pfield 

Pfield3No jobb, pfelt3 pfelt3_nr 

The pfield number of a new or existing 
pfield 



 

62 
 

Confidential 

 

 

  

Pfield4Name pfelt4 pfelt4_navn 

The Pfield name of a new or existing 
pfield 

Pfield4No jobb, pfelt4 pfelt4_nr 

The pfield number of a new or existing 
pfield 

Pfield5Name pfelt5 pfelt5_navn 

The Pfield name of a new or existing 
pfield 

Pfield5No jobb, pfelt5 pfelt5_nr 

The pfield number of a new or existing 
pfield 

ResponsibleEmployeeId jobb responsible_employee_id 

The unique external employee id of the 
employee responsible for the job. 

Transferred jobb overfort 
1 - job has been transferred, 0 - job has 
not been transferred 

Approved jobb godkjent 
1 - job is approved, 0 - job is not 
approved 



 

63 
 

Confidential 

REVISION HISTORY 

Version Date Author Version Description 

1.0 15.12.2020 IS  Combined several documents into this document 

2.0 19.01.2021 IS  Added API for Organization unit import module 

2.1 19.02.2021 IS  Updates for new and updated endpoints 

2.2 16.03.2021 IS  Look up position by external position id 

2.3 28.04.2021 IS  Absence integration endpoint  

2.4 29.06.2021 IS  Employee position snapshot import 

2.5 29.08.2021 IS  Employee position section updated, added references at end 

2.6 11.11.2021 IS  
15.1 updates to Employee position snapshot import, org. unit import and 
default values 

2.6.1 18.11.2021 IS  Added parallellisering parameter to file exports. 

2.6.2 30.11.2021 IS 15.2 
WinTidAPI new endpoint addhistoricalselfdeclaredabsence 
Support for multiple emails in email field, employee imports 
updated documentation for /absencesf endpoint 

2.7 08.12.2021 IS 15.3 
Added /import/employeeandposition endpoint, minor correction to 
/absencesf endpoint 

2.7.1 16.12.2021 IS 15.3 Fixed wrong endpoint names in 2.2.4.2 and 2.2.4.3 

2.7.2 03.02.2022 RS 15.3 Added /exportToApi/UpdateRecordReceipts endpoint in 2.2.8 

2.7.3 07.02.2022 RS 15.3 Added support for correlation Id in /absencessf endpoint in 2.2.4.5 

2.7.4 07.02.2022 RS 15.3 
Removed planned comments for /import/employeeandposition in 2.2.4.3 
As it is now implemented 

2.7.5 09.02.2022 RS 15.3 Added support for the “Deleted” field in position imports 

2.8 04.03.2022 IS 15.3 Inserted chapter 5 on API based exports 

2.8.1 05.05.2022 IS 16.0 
Removed /export/schematimesf from swagger documentation 
Added WorkWeekHours  

2.8.2 08.11.2022 IS 16.3 
Added new functionality for handling employee import of Calendar and Wage 

group in 2.2.4.2 and 2.2.4.3 

2.9 22.06.2023 HH 16.7 Added fields Phone for Employee and Hourly Wage for EmployeePosition 

2.9.1 14.08.2023 IS 16.8 Added dynamic query for Daily Results in 2.2.8 (Export to Api moved to 2.2.9) 

2.9.2 28.08.24 IS 17.2 
Added support for apikeys in wintid api. Updated employee import optional 

texts. 

2.9.3 14.10.24 IS 17.2.8 
Added dynamic query for Employee (2.3.8.2), Job (2.3.8.3) and Work 

Environment Act (2.3.8.4) 

2.9.4 13.12.24 
IS 
HH 

17.3.5 
Added Employee import: snapshot by firm and included information about 

cutoffdate for snapshot import 
Added Responsible Use of API Endpoints 

2.9.5 21.01.25 HH  
Filled in the field descriptions for dynamic query Work Environment Act 

(2.3.8.4) 

2.9.6 25.02.25 IS 17.3.13 Added description of Job import  

2.9.7 11.03.25 IS 17.3.17 Added dynamic query for Registrations 

 


